Clamped Splines

Example

Construct a clamped spline S that passes through the points

(1,2), (2,3), and (3.5). §'(1) = 2 and §'(3) = 1.
Solution

50(x) = ap + bo(x — 1) + cox — 1)? +dp(x — 1)?
si)=ar+bix =2 +c1(x =2 +di(x —2)°

2= f(1)=ao
3= f(2)=ao+ bo+ co+ do

3=f(2)=a

f



S5=f3B)=a +b+c1+d

55(2) = 57(2) : bo+ 2co + 3do = by

50(2) = 57(2) 1 2¢p + 6dy = 2

so(l)=2: by =2

s13)=1: by +2¢;+3d, =1

Solving this system of equations gives the spline as

) 2420 — 1) —2(x— D+ 3(x — 1) forx € [1,2]
FLX) = 5
| 34+ 2(x—2)+2(x —2)? — 3(x — 2), forx € [2,3]




Theorem

If f 1s defined ata = xy < x; < -+ <x, = band differentiable at a and b, then f has a
unique clamped spline imterpolant § on the nodes xp, x;, .....x,; that 1s, a spline iterpolant
that satisfies the clamped boundary conditions §'(a) = f'(a) and §'(b) = f'(b). i

Proof

Si(x) =a; +bj(x—x) +cj(x—x)  +di(x—x)°  j=01,....n—1
Remember Equation (3.20),
I h; .
b; = E{Hj+1 —a;) — ?(3-'-’-} + ¢jy1), (3.20)
; R
Since f'(a) = §'(a) = 5 (xp) = bp. Eq. (3.20) with j = 0 implies

] h
f(@ = 4@ —a0) = 3 (2co + )



Consequently,

3 ,
2hoco + hocy = (@ —ap) — 3f (a)
0

Also remember that,
bjr1 = bj + hi(c; + ¢j11). (3.19)
On the other hand, f'(b) = b, . So,

fj(b) — bn — bn—l + hn—l(ﬁr—l + fn)

Combination of the above equation and Eg. (3.20) with j=n-1 results in,

l::lrn - H”_l .FIH-_

fj(b) — P (1‘7':1 1+ CH) + hy— ]{Cn—l + ¢p)
n—1 3

dy — dy_| JIEI”_|
— + . (Fﬁ—] + jrfr)-




Consequently,

, 3
hn—lffr—l + 2hfr—]'f-'.l*: — 3f (b) — h—{ﬂfr — lf:-'n—l)

n—1

Remember equations (3.21),

. .

J J

] d

hi—icj-1 4 2hj—1 + hy)e + hicj = —(aj41 —aj) - 0 dj-1).

Equations (3.21) together with the equations,

3
2hoco + hocy = F(m —ap) — 3f'(a)
0

=

(ﬂn T ﬂn—l)

hn—l":n—l + EJIEIJ'r—l"-ﬂfr — BfI(b) —

n—1

(3.21)



determine the linear system Ax = b, where

) ﬁ%(ﬂi-—-ﬂﬂ)-—'3f”(ﬂ)

3 3
Emr—m)—ﬁﬂh—ﬂm

3

n—1 n—2

3f/(0) = 5 (an — an-1)

3 3
h . (ﬂn — ﬂrt—l} W (Hﬂ—l — Hrt—l)
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Matrix A is strictly diagonally dominant. A linear system with a matrix

of this form has a unique Solution.

Example

Use the data points (0, 1), (1, e), (2.€%). and (3, ¢€’) to form a clamped

spline §(x) that approximates f(x) = ¢*. f'(0) =1 and f'(3) = €’

Solution

Si(x) = a; + bj(x — x;) + ¢j(x — x;)* + d;(x — x;)°

fI:3.hg:h1:h3:l.ﬂg:[lm:t‘f.ﬂg:{?

g — O D

0
1
4
1

2]
1 4
0 1
0 0

3e—2)
3(e* —2e+ 1)
3(e® — 2e* + e)
3¢?

.and ay = e

and x =

3

o
Cl
2
3

J=0.1,.... n—1




Ax = b 1s equivalent to the system of equations
2c0 +c1 = 3(e —2),
co+4c; + ¢ =3(e> —2e+ 1),
c1+4cr +c3 = 3(:33 — 22 + e).
2

¢y + 2cy = 3e”.

Solving this system simultaneously for ¢g, ¢1, ¢2 and ¢3 gives,

1
co = l—i(ze-* — 12¢* 4+ 42¢ — 59) = 0.44468,
1 , |
¢ = 1—q](—d,tsﬁ + 24¢* — 39¢ + 28) = 1.26548,
1
cy = 1—E](14.=;:-3 — 39¢* 4+ 24¢ — 8) = 3.35087.

l )
c3 = 1_'*'5(_?!?3 + 42¢” — 12e + 4) = 9.40815.



1 h;
by = —(ajs1 —a;)) — = (2¢; + ¢j11). (3.20)
h; 3

So,

bg = 1.00000, by =2.71016., by = 7.32652
Also,

Ci+1 = ¢j + 3d;h;. (3.17)

So,
dop = 0.27360, d; =0.69513, d, =2.01909

Finally,



|+ x + 0.44468x% +0.27360x°, if0<x<l,
s(x) = { 271828 + 2.71016(x = 1) + 1.26348(x = 1)* 4 0.69513(x = 1), if 1 <x <2,
7.38900 +7.32032(x —2) + 3.35087(x =2)* + 2.01909(x -2)°, if2 <x <3,

3
f ¢" dx = e’ — 1 2~ 20.08554 — 1 = 19.08554.
0

3
j s(x) dx = 19.05965
0

The absolute error in the integral approximation are
Natural : [19.08554 — 19.55229| = 0.46675
Clamped : |19.08554 — 19.05965] = 0.02589

HOMEWORK 4:
Exercise Set 3.5: 13,29



Direct Methods for Solving Linear Systems

Direct techniques are methods that theoretically give the exact solution

to the system in a finite number of steps.

Linear Systems of Equations

Ey: anxy+apx+ -+ apx, = by,

E>: anxi+anxa+ -+ awx, = b, |
(6.1)

EH . A1 + dy2X2 + -0 ApnXy = bn'



We use three operations to simplify the linear system given in (6.1):

l. Equation E; can be multiplied by any nonzero constant A with the resulting equa-
tion used in place of E;. This operation 1s denoted (AE;) — (E;).

2. Equation E; can be multiplied by any constant A and added to equation E; with
the resulting equation used in place of E;. This operation is denoted (E; +AE;) —

(Ei).
3. Equations E; and E; can be transposed in order. This operation is denoted (E;) <

(E)).
[llustration

Ey : X1+ x 4+ 3xy = 4.

Ery: 2xi+ x»— x34+ x4q= 1.

Ey: 3x1— x2— x3+4+ 2x4g = —3,

Ei: —x14+2x24+3x3— xa= 4,



By performing:
(E2 —2E)) — (E2) (E3 —3E)) — (E3)  (Es+ Ey) — (E4)

We have,
Ei: xi+ x + 3x1 = 4.
Eg . — X2 — X3 — 53’34 = -7,
Ej:, : —4,1.";3— Ig—?lq: — 15,
Es: 3x0 4 3x3 4+ 2xa = 8.

In the new system performing:

(B3 — 4E>) — (E3) (E4 + 3E7) — (E4)

resuts In:



E]Z X| + X7 + 3.1[’4: -+

E : —X- B— dx= -, triangular (or reduced) form
Es 3xs + 13xy = 13,
E4Z —]3.1[’4:—]3,

Using backward-substitution process:

.1’4:1
1'3:—(]1—]1.7{'4 _—(]'}—] )_'D
Xr= —(=T4+5x44x3)=—(—T4+540) =2

1124—314—Ig:4—3—2:—1

The procedure is called Gaussian elimination with backward substitution.



anxy + apxs + -+ -+ apx, = by.

ax Xy + anXy + -+ + ayXx, = bs.

p1X] + {dy2X2 4+ ... 4 ApnXy = bm

apy  dpn
dy; dax
A =laij]l =
- nl ay2
apy  dp2
dz1 a2
augmented [A.b] =
matrix
| dnl dn2

Aﬂ:h

and b =




