Clamped Splines

Example

Construct a clamped spline S that passes through the points $(1,2),(2,3)$, and $(3,5) \cdot s^{\prime}(1)=2$ and $s^{\prime}(3)=1$.

Solution

$$
\begin{aligned}
& s_{0}(x)=a_{0}+b_{0}(x-1)+c_{0}(x-1)^{2}+d_{0}(x-1)^{3} \\
& s_{1}(x)=a_{1}+b_{1}(x-2)+c_{1}(x-2)^{2}+d_{1}(x-2)^{3} \\
& 2=f(1)=a_{0} \\
& 3=f(2)=a_{0}+b_{0}+c_{0}+d_{0} \\
& 3=f(2)=a_{1}
\end{aligned}
$$

$5=f(3)=a_{1}+b_{1}+c_{1}+d_{1}$
$s_{0}^{\prime}(2)=s_{1}^{\prime}(2): \quad b_{0}+2 c_{0}+3 d_{0}=b_{1}$
$s_{0}^{\prime \prime}(2)=s_{1}^{\prime \prime}(2): \quad 2 c_{0}+6 d_{0}=2 c_{1}$
$s_{0}^{\prime}(1)=2: \quad b_{0}=2$
$s_{1}^{\prime}(3)=1: \quad b_{1}+2 c_{1}+3 d_{1}=1$
Solving this system of equations gives the spline as
$s(x)=\left\{\begin{array}{l}2+2(x-1)-\frac{5}{2}(x-1)^{2}+\frac{3}{2}(x-1)^{3}, \text { for } x \in[1,2] \\ 3+\frac{3}{2}(x-2)+2(x-2)^{2}-\frac{3}{2}(x-2)^{3}, \text { for } x \in[2,3]\end{array}\right.$

Theorem

If f is defined at $a=x_{0}<x_{1}<\cdots<x_{n}=b$ and differentiable at a and b, then f has a unique clamped spline interpolant S on the nodes $x_{0}, x_{1}, \ldots, x_{n}$; that is, a spline interpolant that satisfies the clamped boundary conditions $S^{\prime}(a)=f^{\prime}(a)$ and $S^{\prime}(b)=f^{\prime}(b)$.

Proof

$$
S_{j}(x)=a_{j}+b_{j}\left(x-x_{j}\right)+c_{j}\left(x-x_{j}\right)^{2}+d_{j}\left(x-x_{j}\right)^{3} \quad j=0,1, \ldots, n-1
$$

Remember Equation (3.20),

$$
\begin{equation*}
b_{j}=\frac{1}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{h_{j}}{3}\left(2 c_{j}+c_{j+1}\right), \tag{3.20}
\end{equation*}
$$

Since $f^{\prime}(a)=S^{\prime}(a)=S^{\prime}\left(x_{0}\right)=b_{0}$, Eq. (3.20) with $j=0$ implies

$$
f^{\prime}(a)=\frac{1}{h_{0}}\left(a_{1}-a_{0}\right)-\frac{h_{0}}{3}\left(2 c_{0}+c_{1}\right)
$$

Consequently,

$2 h_{0} c_{0}+h_{0} c_{1}=\frac{3}{h_{0}}\left(a_{1}-a_{0}\right)-3 f^{\prime}(a)$
Also remember that,
$b_{j+1}=b_{j}+h_{j}\left(c_{j}+c_{j+1}\right)$.
On the other hand, $f^{\prime}(b)=b_{n}$. So,
$f^{\prime}(b)=b_{n}=b_{n-1}+h_{n-1}\left(c_{n-1}+c_{n}\right)$
Combination of the above equation and Eq. (3.20) with $\mathrm{j}=\mathrm{n}-1$ results in,

$$
\begin{aligned}
f^{\prime}(b) & =\frac{a_{n}-a_{n-1}}{h_{n-1}}-\frac{h_{n-1}}{3}\left(2 c_{n-1}+c_{n}\right)+h_{n-1}\left(c_{n-1}+c_{n}\right) \\
& =\frac{a_{n}-a_{n-1}}{h_{n-1}}+\frac{h_{n-1}}{3}\left(c_{n-1}+2 c_{n}\right),
\end{aligned}
$$

Consequently,

$h_{n-1} c_{n-1}+2 h_{n-1} c_{n}=3 f^{\prime}(b)-\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)$
Remember equations (3.21),
$h_{j-1} c_{j-1}+2\left(h_{j-1}+h_{j}\right) c_{j}+h_{j} c_{j+1}=\frac{3}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{3}{h_{j-1}}\left(a_{j}-a_{j-1}\right)$,
Equations (3.21) together with the equations,
$2 h_{0} c_{0}+h_{0} c_{1}=\frac{3}{h_{0}}\left(a_{1}-a_{0}\right)-3 f^{\prime}(a)$
$h_{n-1} c_{n-1}+2 h_{n-1} c_{n}=3 f^{\prime}(b)-\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)$
determine the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
\begin{aligned}
& \mathbf{b}=\left[\begin{array}{c}
\frac{3}{h_{0}}\left(a_{1}-a_{0}\right)-3 f^{\prime}(a) \\
\frac{3}{h_{1}}\left(a_{2}-a_{1}\right)-\frac{3}{h_{0}}\left(a_{1}-a_{0}\right) \\
\vdots \\
\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)-\frac{3}{h_{n-2}}\left(a_{n-1}-a_{n-2}\right) \\
3 f^{\prime}(b)-\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)
\end{array}\right], \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
\end{aligned}
$$

Matrix A is strictly diagonally dominant. A linear system with a matrix of this form has a unique Solution.

Example

Use the data points $(0,1),(1, e),\left(2, e^{2}\right)$, and $\left(3, e^{3}\right)$ to form a clamped spline $S(x)$ that approximates $f(x)=e^{x} . f^{\prime}(0)=1$ and $f^{\prime}(3)=e^{3}$.

Solution

$$
\begin{aligned}
& S_{j}(x)=a_{j}+b_{j}\left(x-x_{j}\right)+c_{j}\left(x-x_{j}\right)^{2}+d_{j}\left(x-x_{j}\right)^{3} \quad j=0,1, \ldots, n-1 \\
& n=3, h_{0}=h_{1}=h_{2}=1, a_{0}=0, a_{1}=e, a_{2}=e^{2}, \text { and } a_{3}=e^{3} .
\end{aligned}
$$

$$
A=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 4 & 1 & 0 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
3(e-2) \\
3\left(e^{2}-2 e+1\right) \\
3\left(e^{3}-2 e^{2}+e\right) \\
3 e^{2}
\end{array}\right], \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

$A \mathbf{x}=\mathbf{b}$ is equivalent to the system of equations

$$
\begin{aligned}
2 c_{0}+c_{1} & =3(e-2) \\
c_{0}+4 c_{1}+c_{2} & =3\left(e^{2}-2 e+1\right) \\
c_{1}+4 c_{2}+c_{3} & =3\left(e^{3}-2 e^{2}+e\right) \\
c_{2}+2 c_{3} & =3 e^{2}
\end{aligned}
$$

Solving this system simultaneously for c_{0}, c_{1}, c_{2} and c_{3} gives,

$$
\begin{aligned}
& c_{0}=\frac{1}{15}\left(2 e^{3}-12 e^{2}+42 e-59\right)=0.44468 \\
& c_{1}=\frac{1}{15}\left(-4 e^{3}+24 e^{2}-39 e+28\right)=1.26548 \\
& c_{2}=\frac{1}{15}\left(14 e^{3}-39 e^{2}+24 e-8\right)=3.35087 \\
& c_{3}=\frac{1}{15}\left(-7 e^{3}+42 e^{2}-12 e+4\right)=9.40815
\end{aligned}
$$

$$
\begin{equation*}
b_{j}=\frac{1}{h_{j}}\left(a_{j+1}-a_{j}\right)-\frac{h_{j}}{3}\left(2 c_{j}+c_{j+1}\right) \tag{3.20}
\end{equation*}
$$

So,
$b_{0}=1.00000, \quad b_{1}=2.71016, \quad b_{2}=7.32652$

Also,
$c_{j+1}=c_{j}+3 d_{j} h_{j}$.
(3.17)

So,
$d_{0}=0.27360, \quad d_{1}=0.69513, \quad d_{2}=2.01909$

Finally,

$$
\begin{aligned}
& s(x)= \begin{cases}1+x+0.44468 x^{2}+0.27360 x^{3}, & \text { if } 0 \leq x<1, \\
2.71828+2.71016(x-1)+1.26548(x-1)^{2}+0.69513(x-1)^{3}, & \text { if } 1 \leq x<2, \\
7.38906+7.32652(x-2)+3.35087(x-2)^{2}+2.01909(x-2)^{3}, & \text { if } 2 \leq x \leq 3 .\end{cases} \\
& \int_{0}^{3} e^{x} d x=e^{3}-1 \approx 20.08554-1=19.08554 . \\
& \int_{0}^{3} s(x) d x=19.05965
\end{aligned}
$$

The absolute error in the integral approximation are
Natural : |19.08554-19.55229|=0.46675
Clamped : |19.08554-19.05965| $=0.02589$
HOMEWORK 4:
Exercise Set 3.5: 13,29

Direct Methods for Solving Linear Systems

Direct techniques are methods that theoretically give the exact solution to the system in a finite number of steps.

Linear Systems of Equations

$E_{1}: \quad a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$,
$E_{2}: \quad a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$,
$E_{n}: \quad a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}$.

We use three operations to simplify the linear system given in (6.1):

1. Equation E_{i} can be multiplied by any nonzero constant λ with the resulting equation used in place of E_{i}. This operation is denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$.
2. Equation E_{j} can be multiplied by any constant λ and added to equation E_{i} with the resulting equation used in place of E_{i}. This operation is denoted $\left(E_{i}+\lambda E_{j}\right) \rightarrow$ $\left(E_{i}\right)$.
3. Equations E_{i} and E_{j} can be transposed in order. This operation is denoted $\left(E_{i}\right) \leftrightarrow$ $\left(E_{j}\right)$.

Illustration

$$
\begin{array}{lr}
E_{1}: \quad x_{1}+x_{2}+3 x_{4}=4, \\
E_{2}: & 2 x_{1}+x_{2}-x_{3}+x_{4}=1, \\
E_{3}: & 3 x_{1}-x_{2}-x_{3}+2 x_{4}=-3, \\
E_{4}: & -x_{1}+2 x_{2}+3 x_{3}-x_{4}=4,
\end{array}
$$

By performing:

$$
\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right) \quad\left(E_{3}-3 E_{1}\right) \rightarrow\left(E_{3}\right) \quad\left(E_{4}+E_{1}\right) \rightarrow\left(E_{4}\right)
$$

We have,

$$
\begin{array}{lr}
E_{1}: & x_{1}+x_{2}+3 x_{4}=4, \\
E_{2}: \quad-x_{2}-x_{3}-5 x_{4}=-7, \\
E_{3}: & -4 x_{2}-x_{3}-7 x_{4}=-15, \\
E_{4}: & 3 x_{2}+3 x_{3}+2 x_{4}=8 .
\end{array}
$$

In the new system performing:
$\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$
$\left(E_{4}+3 E_{2}\right) \rightarrow\left(E_{4}\right)$
resuts in:

$$
\begin{aligned}
E_{1}: & x_{1}+x_{2}+3 x_{4} & =4, \\
E_{2}: & -x_{2}-x_{3}-5 x_{4} & =-7, \\
E_{3}: & 3 x_{3}+13 x_{4} & =13, \\
E_{4}: & -13 x_{4} & =-13 .
\end{aligned}
$$

Using backward-substitution process:

$$
\begin{aligned}
& x_{4}=1 \\
& x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 \\
& x_{2}=-\left(-7+5 x_{4}+x_{3}\right)=-(-7+5+0)=2 \\
& x_{1}=4-3 x_{4}-x_{2}=4-3-2=-1
\end{aligned}
$$

The procedure is called Gaussian elimination with backward substitution.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
A \mathbf{x}=\mathbf{b}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
$$

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

augmented matrix

$$
[A, \mathbf{b}]=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & \vdots & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & \vdots & b_{2} \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & \vdots & b_{n}
\end{array}\right]
$$

